Location Estimation in Wireless Sensor Networks Using Spring-Relaxation Technique
نویسندگان
چکیده
منابع مشابه
Location Estimation in Wireless Sensor Networks Using Spring-Relaxation Technique
Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our...
متن کاملAdaptive Estimation and Pi Learning Spring- Relaxation Technique for Location Estimation in Wireless Sensor Networks
In order to reduce the location estimation error in Wireless Sensor Network(WSN). A localization algorithm is proposed combining adaptive estimation, PI-learning and spring-relaxation techniques for wireless sensor networks in this paper. Our proposed method takes the advantages of the spring-relaxation technique, thus it inherits its simplicity. The overall accuracy of the location estimations...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Relative location estimation in wireless sensor networks
Self-configuration in wireless sensor networks is a general class of estimation problems that we study via the Cramér–Rao bound (CRB). Specifically, we consider sensor location estimation when sensors measure received signal strength (RSS) or time-of-arrival (TOA) between themselves and neighboring sensors. A small fraction of sensors in the network have a known location, whereas the remaining ...
متن کاملTarget Location Estimation in Wireless Sensor Networks Using Binary Data
Abstract — Based on the assumption that the received signal intensity is inversely proportional to a polynomial function of the distance from the target, a maximum likelihood (ML) target location estimator that uses multi-frame binary data is proposed for wireless sensor networks (WSNs). Simulation results show that this estimator is much more accurate than a heuristic weighted average method, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2010
ISSN: 1424-8220
DOI: 10.3390/s100505171